Interlinking geospatial RDF data

Geospatial Interlinking in action

Geospatial Interlinking

Input:

- A topological relation *R*
- A source dataset of geometries S
- A target dataset of geometries *T* Types of Geometries:
 - LineStrings
 - Polygons

Output:

• All pairs $(s,t) \in S \times T$ such that R(s,t) = true

Challenges:

- quadratic time complexity, **O(n²)**
- time-consuming topological relations over complex geometries

Filtering – Verification Framework

Two-step procedure to reduce the quadratic time complexity:

Filtering, a.k.a. Space Tiling

Involves three steps:

- 1. We define an *Equigrid* on Earth's surface
- 2. We index geometries according to their *Minimum Bounding Rectangle*
- 3. We define as *candidate pairs* only the geometries that share at least one tile

Advantages:

- Exact process
- Linear time complexity O(n)
- Significant gains in efficiency

Space Tiling Example

Space Tiling Example - Equigrid

Space Tiling Example - MBR indexing

Space Tiling Example – Candidate Pairs

Just **3** pairs:

 $g_1 - g_2$ $g_1 - g_3$ $g_3 - g_4$

50% lower than the **6** pairs of the brute-force approach.

Verification

Two different types:

- 1. Proximity relations (such as dbp:near) with a distance threshold
 - e.g., find all cities from **S** that are less than 1km away from any river in **T**
- 2. Topological relations according to the Dimensionally Extended 9-Intersection Model (DE9IM)
 - Equals
 - Touches
 - Contains
 - Covers
 - Intersects
 - Within
 - CoveredBy
 - Crosses
 - Overlaps
 - Disjoint

10

ORCHID

Filtering:

- Static space tiling
- Granularity for width and height = θ / R / a

• a = 1

Verification:

- Hausdorff distance $hd(s,t) = max_{si \in S} \{min_{ti \in T} \{\delta(s_i,t_i)\}\} \le \theta$
- Optimizations for efficient computation:
 - Bounding circles
 - Cauchy-Swarz Inequality for Distance Approximation

Open-source implementation (https://github.com/dice-group/LIMES)

Axel-Cyrille Ngonga Ngomo: ORCHID - Reduction-Ratio-Optimal Computation of Geo-spatial Distances for Link Discovery. International Semantic Web Conference, 2013: 395-410

Silk-spatial

Filtering:

- Static space tiling
- Granularity for width and height = 1/a^{o 2}
 - a = 10

Verification:

- DE9IM topological relations single relation per run
- Massive parallelization (Apache Hadoop)

Open-source implementation (https://github.com/silk-framework/silk)

RADON

Filtering:

- Swapping strategy
- Dynamic space tiling
 - Width = $\frac{1}{2}$ (average_{s∈S}(s.width) + average_{t∈T}(t.width))
 - Length = $\frac{1}{2}$ (average_{s∈S}(s.length) + average_{t∈T}(t.length))

Verification:

- DE9IM topological relations single relation per run
 - Relation-based optimizations
 - Hash-based redundancy elimination
- Multi-core parallelization

Open-source implementation (https://github.com/dice-group/LIMES)

Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, Axel-Cyrille Ngonga Ngomo: Radon - Rapid Discovery of Topological Relations. AAAI 2017: 175-181

stLD

Filtering:

- Static Index
- Variety of approaches (e.g., R-Trees, Equigrid, Hierarchical Grid)
- Indexes exclusively the source dataset S
- MaskLink algorithm

Verification:

- Both topological and proximity relations single relation per run
- Massive parallelization (Apache Flink)
- Suitable for streams

Implementation not available.

Georgios M. Santipantakis, Apostolos Glenis, Christos Doulkeridis, Akrivi Vlachou, George A. Vouros: stLD: towards a spatio-temporal link discovery framework. SBD@SIGMOD 2019: 4:1-4:6 Georgios M. Santipantakis, Christos Doulkeridis, George A. Vouros, Akrivi Vlachou: MaskLink: Efficient Link Discovery for Spatial Relations via Masking Areas. CoRR abs/1803.01135 (2018)

14

GIA.nt: Geospatial Interlinking At large – Part A

Improving RADON's Filtering:

- Dynamic space tiling, based exclusively on the source dataset S
 - Width = average_{$s \in S$}(s.width)
 - Length = average $s \in S$ (s.length)
- No dataset swapping
- Target dataset (=largest input dataset) is read one by one from the **disk**
- Inherent removal of redundant (i.e., repeated) geometry pairs
 - Easily parallelizable in MapReduce, due to its geometry-centric functionality

George Papadakis, Georgios M. Mandilaras, Nikos Mamoulis, Manolis Koubarakis. Progressive, Holistic Geospatial ¹⁵ Interlinking. WWW 2021: 833-844

Memory requirements

Lower running time

GIA.nt: Geospatial Interlinking At large – Part B

Improving RADON's Verification:

• Holistic Geospatial Interlinking:

Run-time —lower by **>80%**

Simultaneous estimation of all DE9IM topological relations \rightarrow Intersection Matrix

 $\text{DE9IM}(a,b) = \begin{bmatrix} \dim(I(a) \cap I(b)) & \dim(I(a) \cap B(b)) & \dim(I(a) \cap E(b)) \\ \dim(B(a) \cap I(b)) & \dim(B(a) \cap B(b)) & \dim(B(a) \cap E(b)) \\ \dim(E(a) \cap I(b)) & \dim(E(a) \cap B(b)) & \dim(E(a) \cap E(b)) \end{bmatrix}$

Progressive Geospatial Interlinking

Ideal for applications with limited resources:

• Temporal or computational (e.g., Amazon Lambda functions)

Requirements with respect to batch approaches [1]:

- 1. Same Eventual Quality
- 2. Improved Early Quality
 - Measured through Progressive Geometry Recall (PGR)

17

Solution: Solution: Sorted Candidate Pairs Filtering Sorted Candidate Pairs Scheduling Verification Candidate

[1] Steven Euijong Whang, David Marmaros, Hector Garcia-Molina: Pay-As-You-Go Entity Resolution. IEEE Trans. Knowl. Data Eng. 25(5): 1111-1124 (2013)

Progressive GIA.nt

Input:

• Budget B + source dataset + target dataset

Filtering:

• Same as batch GIA.nt

Scheduling:

- Priority queue with top-B weighted candidate pairs based on either of the following functions:
 - Co-occurrence Frequency (CF): #common tiles
 - Jaccard Similarity (JS): normalized CF
 - Pearson's χ^2 test (χ^2): degree to which **s** and **t** occur independently in tiles

Verification:

Processes the pairs of the priority queue in decreasing weight

higher scores → more likely to satisfy at least one topological relation

George Papadakis, Georgios M. Mandilaras, Nikos Mamoulis, Manolis Koubarakis. Progressive, Holistic Geospatial Interlinking. WWW 2021: 833-844

Dynamic Progressive Geospatial Interlinking

Improved Static Progressive Geospatial Interlinking in three ways:

- 1. New weighting schemes based on the complexity of geometries.
 - $\circ \quad \text{Normalized MBR overlap} \rightarrow \text{higher effectiveness}$

$$MBR(s,t) = \frac{MBR(s \cap t)}{MBR(s \cup t)} = \frac{MBR(s \cap t)}{MBR(s) + MBR(t) - MBR(s \cap t)}$$

 $\circ \quad \text{Inverse sum of points} \rightarrow \text{higher time efficiency}$

 $ISP(s,t) = \frac{1}{p(s)+p(t)}$, where p(g) denotes the number of boundary points

- 2. Composite weighting schemes \rightarrow higher effectiveness, more deterministic behavior
 - the primary one is used for scheduling all pairs
 - o the secondary one is used for resolving the ties

3. Dynamic Progressive GIA.nt

George Papadakis, Georgios M. Mandilaras, Nikos Mamoulis, Manolis Koubarakis. Static and Dynamic Progressive ¹⁹ Geospatial Interlinking. ACM TSAS (to appear)

Supervised Progressive Geospatial Interlinking

Drawbacks of Progressive Geospatial Interlinking:

- Store the top-BU weighting pairs in main memory
- Might be hard to fine-tune BU
- Considers at most two sources of evidence, i.e., composite weighting schemes

- 1. Filtering \rightarrow as in (Batch & Progressive) GIA.nt
- 2. Supervised Filtering
 - Classify candidate pairs into "likely related pairs" & "unlikely related pairs"
 20
- 3. Verification \rightarrow as in Batch GIA.nt

Supervised Filtering

Challenges:

- Define generic, effective & efficient features
- Avoid any human intervention
- Address class imbalance
- Minimize the feature and the training set \rightarrow simple & efficient classification models

Approach outline:

- Self-supervised learning based on undersampling
- 4 categories of features
 - 1. Area-based (source/target/intersection MBR area)
 - 2. Boundary-based (source/target #boundary points and boundary length)
 - 3. Grid-based (#common tiles, #tiles intersecting the target MBR)
 - 4. Candidate-based (total/distinct/real candidates per source/target geometry)
 - 2 sub-categories in each case:
 - Atomic features
 - Composite features

Future directions

- Proactive Geospatial Interlinking
 - Terminate Geospatial Interlinking automatically as soon as recall exceeds a desired level → minimize the time required for processing voluminous datasets
- Generalize to 3-dimensional data
 - Silk-spatial: 3rd dimension = time
 - stLD: 3rd dimension = height (e.g,. aviation data)

- Improve Intersection Matrix computation
 - O(n · logn) [1]
 - Fine-grained MBR

[1] Edward P. F. Chan, Jimmy N. H. Ng: A General and Efficient Implementation of Geometric Operators and Predicates. SSD 1997: 69-93

22

JedAI-spatial demonstration

Execution Mode

Preliminary implementation available at: https://github.com/AI-team-UoA/JedAI-spatial

Parallel Algorithms

- Common three-stage pipeline for the state-of-the-art parallel joins:
 - o GeoSpark, i.e., Apache Sedona
 - Spatial Spark
 - o Magellan
 - Location Spark
 - Parallel GIA.nt

